業界リレーペン 「すばらしい木の未来」
（株）ウッディさんない 代表取締役 下村基作

人と木を組み合わせて休むという字に
なっていると、子供の頃先生から聞かされ
たことを思い出したが、いよいよ
その話が重要な意味をもつ時代になって
来ると思います。

いつの時代の字か分かりませんが、よく
その頃から木との関係を意識していたも
のだと考えさせられる。私も小学校の
頃から家庭の木の香りの中で育てられ、
その後小さな木材市場の経営者として父
の事業を引き継ぎ３５年、その間木材
建築工事の仕事をさせていただいており、
平成５年からは更に地域資源の木材を活
かした資材産業として、「(株)ウッディさ
んない」(第3セクター)設立に関係し、経
営を引き継ぎ5年を経過しました。今後の
市場も非常に厳しい時代ですが、木材関
係もまたまぎれも少なくその中にあり、大
変な毎日です。しかし、何かを創造して事
を起こし、新しい「業」や「物」へ挑戦し、そ
の結果少しでも世の中から評価を得た時は、
これまたこの喜びは得たいものであり、
自分にある木をだから毎日を過ごしている
ようにも思えます。

３年程前、木高研の２日間にわたる「す
ばらしい木の未来」の研修を受けた時の
先生のお話を中、木は形状記憶材料で
あり、この記憶を消すことにより今まで
にない新しい材料の開発が可能になり、
丸太から高圧化して角材にした現物を見せ
られ感謝した事が思い出されます。また、
大木を支える幹の細胞壁は生じた時、繊
維質が方向を変え、裏にも重なりゴ
ルフのカーボンシャフトの構造のように
なっている様子は誠に良くなっており、
この原理を応用したもので、今木高研で
実用化を模索中、中空円筒ＬＶＬでは
ないかと考えます。

こうして木は森として生長時は人に酸
素を供給してくれ、三酸化炭素を固定し
て温暖化防止に役立ち、伐採されては各
種材料として建築や化学製品に利用され、
今後の技術の進歩により無限の可能性を秘
めた資源となるものと思われます。

１０年程前までは鉄とコンクリートは
全てに勝る材料のように取り扱われてい
ました。だが、環境問題がクローズアップされ、
地球環境にやさしい森林が再生可能な資
源として重要な意味をもつようになって
きた昨今、建設省と林野庁の連携による
自然にやさしい川づくりが提案され、も
う既に各地で実施されており、生材化の
有効利用も大幅に大幅に増加するものと思われ
ます。これから時代の流れに少しでも乗り、
ビジネスチャンスを活かしたいと考えて
おります。しかしこ、業界として一番心配
している事は、バイオキシム問題でで
た焼け材の規制の事ではないかと思います。
このきびしい問題のなか、何千万円も投
資のできる業者は存在するのでしょうか。
バイオキシムを発生させる塩化物と木く
ずを一緒にした法律の考え方はどうして
も理解できません。今後法律の改正があ
れば別ですが、そうでなければこれ等の
産業廃棄物を高付加価値化して商品化す
るしかないと思いますので、木高研の更
なる研究に期待するものであります。こ
の問題をクリアすれば木材産業の未来も
明るくなり、環境問題にも大きく貢献す
ることになると思います。
高周波併用型木材乾燥機実証試験「現地研修会」開催

◇乾燥機名称：高周波・蒸気熱源複合型木材乾燥機「ハイドライ」...乾燥容量22㎥
◇試験材：秋田スギ正角（芯持ち角）115mm×115mm×3650mm 384本

まだまだ西日本では暑さが続く10月5日、大阪府美原町で木材乾燥を専門に行っている「ドライテック美原」において、木材高度加工研究所の小林教授（ドライテック美原で稼働している高周波併用型木材乾燥機の開発者）を講師に現地研修会を開催いたしました。

この度の研修会は、今年度5回予定している木材乾燥実証試験の第2回目の日程に組み入れたものです。

会場が秋田から遠いこともあり、参加者は少なかったのですが、現地で現物を目の当たりにしての研修ということで、参加の皆さまには、この乾燥方法に対する理解を深めていただく良い機会になったと思います。

緑川推進機構理事長のあいさつに引き続き、ドライテック美原の森工場長から会社の沿革、現状についての説明を伺い、小林先生からは、高周波を乾燥に利用しようと思ったきっかけ（「丸太を圧縮して角材にする研究に取り組んでいたとき、整形し易くするため丸太に熱を加えていたが、その熱源として高周波を利用していた。実験を進めていくうちに、この高周波は乾燥に応用できると思い立った。）や、高周波を利用した乾燥の原理や特徴、効果、そしてこの度実施した乾燥スケジュールについて説明していただきました。小林先生には質問が集中し、その受け答えで大変盛り上がった場面もありました。

その後場所を移し、実際に乾燥を終えた試験材の入った乾燥機の前で、小林先生、森工場長の講解を聴き、参加者は思い思いに乾燥の仕上がりなどをチェックしていました。

工場側の作業の段取りの関係で、電極板にコードが接続された状態となっており、試験材を乾燥機の外に引き出すことができず、材面を含め全体を確認できなかったことはありましたが、総体的には意義のある研修であったと思います。

最後に、森工場長から工場全体を案内していただき、研修会を終了いたしました。

今後予定している乾燥実証試験においても、現地で乾燥後の状況を見ていたいただく機会を設けております。お気軽にどうぞ。

①日時 11月24日木曜 13：30～15：30
②場所 ドライテック美原
大阪府南河内郡美原町3丁目1－94
③試験材 秋田スギ平角 192本
④その他 現地集合、現地解散
□4回目の乾燥に合わせた現地見学会 12月7日頃の予定
技術コンサルタント指導事業

技術コンサルタント指導事業は、木材関連企業の技術指導を行うため、専門知識及び経験を有する方を技術コンサルタントとして委嘱し、企業が独自では解決困難な製品または製造工程等に関する技術的諸問題の解決を図ることによって、企業の技術向上に役立てることを目的に実施しているもので、皆さまの要請に応じてコンサルタントを工場等へ派遣し、現場において技術相談等に対応するものであります。

推進機関では、本年度も技術コンサルタント指導事業を実施しております。皆さまには費用負担をおかけしないような仕組みで実施しておりますので、希望される方がございましたらご連絡ください。

コンサルタントにお願いしております方々は次のとおりです。

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属及び職名</th>
<th>専門分野</th>
</tr>
</thead>
<tbody>
<tr>
<td>佐々木光</td>
<td>木材高度加工研究所長（教授）</td>
<td>木質材料製造</td>
</tr>
<tr>
<td>田村靖夫</td>
<td>木材高度加工研究所教授</td>
<td>木材接着</td>
</tr>
<tr>
<td>鈴木有</td>
<td>木材高度加工研究所教授</td>
<td>木質構造</td>
</tr>
<tr>
<td>土居修一</td>
<td>木材高度加工研究所教授</td>
<td>木材保存</td>
</tr>
<tr>
<td>小林好記</td>
<td>木材高度加工研究所教授</td>
<td>木材乾燥</td>
</tr>
<tr>
<td>飯島泰男</td>
<td>木材高度加工研究所教授</td>
<td>木材構造利用</td>
</tr>
<tr>
<td>小泉章夫</td>
<td>木材高度加工研究所助教授</td>
<td>木材強度</td>
</tr>
<tr>
<td>山内繁</td>
<td>木材高度加工研究所助教授</td>
<td>木材化学加工</td>
</tr>
<tr>
<td>岡崎泰男</td>
<td>木材高度加工研究所講師</td>
<td>木材利用科学・木材調色</td>
</tr>
<tr>
<td>峯村伸哉</td>
<td>（前 北海道立林産試験場特別研究員）</td>
<td>木質材料製造</td>
</tr>
<tr>
<td>児玉通一</td>
<td>（前 秋田県工業技術センター主任専門研究員）</td>
<td>木材塗装</td>
</tr>
<tr>
<td>和田勇次郎</td>
<td>大井工業課仙台支店長</td>
<td>木材加工・生産管理</td>
</tr>
<tr>
<td>奈良直哉</td>
<td>（前 北海道立林産試験場乾燥科長）</td>
<td>木材乾燥</td>
</tr>
<tr>
<td>河内鈴悦</td>
<td>関秋田県木材加工推進機構客員指導員</td>
<td>室内調度品のデザイン</td>
</tr>
<tr>
<td>柴田謙治</td>
<td>木材高度加工研究所実験補助嘱託</td>
<td>ロクロ加工</td>
</tr>
<tr>
<td>佐藤茂</td>
<td>関秋田県木材加工推進機構参与</td>
<td>木材塗装</td>
</tr>
</tbody>
</table>
建築基準法の改正に伴う木材業界への影響（第1回）

推進機構顧問　山田　稔

−諸制度の改革は木材製品の評価基準を根本的に変える−

平成10年6月に建築基準法の改正がおこなわれ、諸制度の法案が平成11年6月15日に国会を通過いたしました。諸制度の改革は平成12年6月までに施行されることになります。この諸制度に関連し、木材業及び木材製品に係わる諸問題をシリーズで報告いたします。

第1回は建築基準法の諸制度の改革が木造住宅にかかわる個別的な問題ポイントを説明いたします。

1. 建築確認申請の民間解放と中間検査の実施

建築基準法の改正では確認申請の民間解放、中間検査の実施・導入がポイントになります。特に、中間検査の導入は欠陥住宅の排除を目的とし、住宅品質確保促進制度とも関連します。東京、神奈川、大阪ではすでに施行し、その他の県でも順次整備されるようです。

2. 住宅品質確保促進制度は

住宅の性能表示と瑕疵担保10年保証義務

住宅確保促進制度は性能表示制度（任意）と瑕疵担保10年保証義務（法律）によって規定しております。

住宅性能表示は住宅性能について表示するものです。建設省では委員会を設置し、平成11年末までに作成する予定です。性能表示の対象項目は構造安全性、火災安全性、耐久性能、温熱環境性能、空気環境性能、長寿命対応性能などが予定されております。この性能表示が任意制度であっても、木材の構造的な性能を表示することが競争になると思います。したがって伝統的な木材評価は変更されることになります。

瑕疵担保10年保証義務は、住宅の竣工引き渡し後10年間は「住宅の構造部、雨漏りによる不具合」があった場合に補償・修理を義務づけています。この法律は平成12年6月から施行されます。したがって、住宅の構造部及び雨漏りによる不具合は避けて通ることは出来なくなっていますので、この対策が工務店にとって重要であります。

3. 次世代省エネルギー基準で

気密住宅に使う木材の含水率20%以下と規定

次世代省エネルギー基準が平成11年3月30日に制定されました。この基準では、気密住宅に使用する木材の含水率を20%以下と規定しました。したがって、高気密住宅などにはこの影響が出ると思います。また、構造材及び羽毛材ともに詳細に規定しております。

この基準は、住宅品質確保促進制度とも関連しますが、住宅の品質を向上させること、及び保証させることからでてきております。したがって、木造住宅に使う木材は、外観品質よりも住宅性能に係る品質から評価されるようになります。

住宅建築を取り巻く環境の変化

建築基準法の改正

性能表示制度

瑕疵担保期間

10年義務

住宅建築

請負

次世代省エネ基準

改正解体・リサイクル法

完成証

所得保証保険

住宅業界には完成証、性能証明、所得保険などがありますが、「木材加工最前線」の次号以降で順次説明いたします。
中国木材株 米松の平角乾燥材「ドライ・ビーム」の戦略
推進機構顧問 山田 稔

－住宅の性能化・瑕疵保証への先進的な取り組み事例－

全国の木造住宅の梁、桁部材を席巻しようかという日本一の製材会社の取り組みを紹介します。

9月下旬 広島県呉市にある中国木材㈱を訪問し、「本社製材工場」と同市内陸工業団地にある「郷原工場」を見学した後、堀川保幸社長からお話を伺いました。

堀川保幸社長

1. 木製構材料米松「ドライ・ビーム」への事業展開

現在までの事業展開の経過をみると、木製構材の生産からチップ工業、北洋材の製材、米松の製材へと展開し、そして乾燥平角「ドライ・ビーム」を新しい事業分野に転進しようとしています。米松の製材量の30％程度が「ドライ・ビーム」として生産されているが、平成13年には「ドライ・ビーム」が米松の製材量の50％を超えるようになるとの堀川社長からのお話をありました。

2. 住宅の性能化・瑕疵保証を先取った構材「ドライ・ビーム」

平角「ドライ・ビーム」は、平成12年6月から施行される住宅品質確保促進制度により必要性が一層増すことを確信し、構想を更に大きく展開しようとしています。

米松の乾燥材「ドライ・ビーム」は、堀川社長のご自宅の建築経験から、住宅品質のための乾燥の必要性を確信して取り組むことになりました。乾燥設備について、遠赤外線乾燥機、高温乾燥機、高周波乾燥機、米国の蒸気乾燥機を導入試験し、そして蒸気乾燥機による大量乾燥に踏み切ることになりました。品質確保した乾燥スケジュールが完成し、乾燥中の木材含水率の自動計測によるコンピュータ自動制御管理にて行われています。

この年末には50立米の乾燥機が合計220機まで増加し、更に増設用敷地も購入して確保出来ました。

3. 米松製材を中心とした事業ネットワーク

原材料の米松丸太の製材に伴って生産される端材の利用形態については、チップは近くの王子製紙に輸出して紙パルプに、飴屑は活性炭の原料として隣接の二村化学㈱に搬送し活性炭として製品化しています。また、廃材は平角乾燥するための燃料として活用し、蒸気乾燥機の燃料のコストダウンに寄与しています。

物流についての展開は、月間11万立方米の輸入丸太を専用外船4隻で運行し、専用岸壁に横づけされ、1週間に1回の割合で陸揚げされています。そして、生産された製材は専用内航船3隻で大阪、名古屋、東海、東京、東北などのセントラル海上輸送し、各地工場から即納体制で顧客に配送されています。

経営管理としての数値管理の面では、原料丸太から製品までの各工程における材積計算が迅速に処理され、製品の出荷時の製造原価が明確となっています。

製品に押された管理番号

4. 木材コンピュータ

本社の製材工場、郷原工場の乾燥、プリカット加工ライン、集成材工場などを見学し、そして堀川社長のお話を伺っていまずと、「製材業」の業態から「木材を原材料としたコンピュータ」としての形態へと、着実な歩みを進めていることが感じられます。

年間米松丸太の輸入量132万立方に相当する製材業として、相当な先行投資が行われ、その結果として製品の品質、価格競争力が形成されているように思います。このような原料からの処理、製材を中心とした多角的なネットワーク、生産エンジニアリング、物流の合理化、計数管理等に対する経営の取り組み方を拝見して、「石油コンピュータ」を連想させることができませんでした。
山車ふっ掛けが行われていた9月上旬、角館町の「そのだ工芸」を訪れ、ろくろ加工による木工品造りに取り組んでいる雲雀忠雄さんから話を伺いました。「そのだ工芸」は桧木内川に架かる国道46号線の橋の近くにあります。

千葉で生活していたころ趣味で始めた木工品作りが、今では本業となっています。

木のもっている自然な光沢を塗装にあらわで出すことにこだわりを持ち、しかも漆などの内液にも外液と同じような艶を出すため、努力と工夫を重ねている。

ろくろはすごく普通のものを使っているが、刃物は自分で作った物を使用。

一つの作品を完成させるまでに、少ない場合で6、7本の刃物を使う。荒削りから仕上げに向け、刃先の角度を変えたものを用い、段々と90度に近い角度にして作業を行う。

最終の仕上げでは、サンドペーパー、耐水ペーパーなども使用している。

製作に当てて特に心がけていることは、仕上げの際、刃物の削りあとの、ペーパー等のキズが残らないようにすること。

材料としては、年輪のはっきりしない木、堅い木（梨、椿、サルスベリ、樫など）が削りやすく、光沢も出やすい。檜、檜、杉（天杉、造林杉）、ヒバ、柿、栗、橡なども手がけているが、これからもできるだけ多くの樹種に挑戦してみたい。

桧によるカプレや、花粉の出る時季に杉を削っていると花粉症と同じような症状になるなど、すべての木は毒を持っているという貴重なお話を伺いました。

雲雀さんの作品は、田沢湖町の「たぎわこ芸術村」でも販売されています。

ひやめいはし

百日石橋（表紙の声）

長さ20.9m、幅5m、設計荷重250の木造車道橋。主に秋田スギの集成材を使用。

木造車道橋の強度や剛性に関しては、鋼橋やコンクリート橋と比べても劣らない性能を有しているものの、建設事例は全国的に見てもまだ少ない。その要因の一つとして、木橋の工事費が鋼橋やコンクリート橋に比べて2～3割程度高いことが挙げられる。

したがって、これまで架設された木造車道橋は、経済性を上回る理由によって建設されている場合がほとんどである。

百日石橋もまたふるさと林道緊急整備事業の一環として、地元の林業ＰＲのため木橋が採用され、99年3月に完成した。

また、今年度は、木材加工技術研究所の協力を得て、木ダボ接合による高欄の取り付けも行われた。